MTH 508/608: Introduction to Differentiable Manifolds and Lie Groups Assignment 1

1 Practice problems

1.1 Differential multivariable calculus and topological manifolds

- 1. Review the proofs of all the assertions stated in Subsection 1.1 of the Lesson Plan.
- 2. Establish the assertions in 1.2 (iii)(e) and 1.2 (iv) of the Lesson Plan.
- 3. Show that conditions (a) and (b) of Definition 1.2 (v) of the Lesson Plan are mutually exclusive.
- 4. Show that the space obtained from the unit sphere S^2 in \mathbb{R}^3 by identifying the antipodal points and the space of all planes through the origin in \mathbb{R}^3 are both homeomorphic to $\mathbb{R}P^2$.
- 5. Show that the space X of all orthonormal pairs of vectors in \mathbb{R}^3 is a manifold that is homeomorphic to the unit tangent bundle of the sphere S^2 (comprising all unit vectors tangent to S^2).
- 6. Show that the space of all vectors in \mathbb{R}^3 normal to a curve (one-manifold) C in \mathbb{R}^3 is a 3-manifold.
- 7. Show that $S^1 \times S^1$ and $S^2 \times S^1$ are 3-manifolds.

1.2 Smooth manifolds and mappings

1. Give a C^{∞} structure on S^n consisting of two coordinate neighborhoods using the stereographic projections from the north and south poles.

- 2. Show that the quotient map $p: S^n \to \mathbb{R}P^n$ obtained by identifying the antipodal pairs of points in S^n is C^{∞} of constant rank n.
- 3. Let M and N be smooth manifolds, $U \subset M$ is open, and $f: U \to N$ a C^{∞} mapping. Show that there exists a neighborhood $V(\subset U)$ of any $p \in U$ such that f can be extended to a C^{∞} mapping $f^*: M \to N$ with $f(x) = f^*(x)$ for all $x \in V$.
- 4. Let $\mathcal{M}_{mn}(\mathbb{R})$ be the space of all real $m \times n$ matrices over \mathbb{R} , and $\mathcal{M}_{mn}^{k}(\mathbb{R}) \subset \mathcal{M}_{mn}(\mathbb{R})$ be the subset of matrices whose rank $\geq k$. Show that $\mathcal{M}_{mn}^{k}(\mathbb{R})$ is an open subset of $\mathcal{M}_{mn}(\mathbb{R})$ and hence a smooth manifold.
- 5. Let M, N be smooth manifolds, and let $f: N \to M$ be a submersion.
 - (a) Show that f is an open map.
 - (b) If $\dim(M) = \dim(N)$, then show that f is a local (not global) diffeomorphism onto its image.
 - (c) Given an example of a submersion f that is not a (global) diffeomorphism onto its image.
- 6. Let G(k, n) be the Grassman manifold described in Example 1.2(v)(g) of the Lesson Plan.
 - (a) Show that the quotient map $\pi : F(k,n) \to G(k,n)$ is open and G(k,n) is Hausdorff
 - (b) Fill in the other details in the argument to show that G(k, n) is a smooth manifold.
- 7. Show that the reflection about the x-axis of the figure eight curve in Example 1.2.3 (xvii)(c) of the Lesson Plan is not a diffeomorphism.
- 8. For i = 1, 2, two injective immersions $f_i : N_i \to M$ of smooth manifolds are *equivalent* if there exists a diffeomorphism $g : N_1 \to N_2$ such that $f_1 = f_2 \circ g$.
 - (a) Show that this equivalence is an equivalence relation.
 - (b) Find two inequivalent injective immersions $\mathbb{R} \to \mathbb{R}^2$.
- 9. If $f: N \to M$ be be a C^{∞} mapping of smooth manifolds and $A \subset N$ is an immersed submanifold of N, then $f|_A$ is a C^{∞} mapping into M.

- 10. Let $f : N \to M$ be an injective immersion. Then show that f is proper (i.e., inverse of a compact set is compact) if and only if f is an imbedding and f(N) is a closed regular submanifold of M.
- 11. If N is a submanifold of a smooth manifold M and $V \subset M$ is open, then show that $N \cap U$ is a countable union of connected open subsets of N.
- 12. Give an example of a C^{∞} function on a submanifold N of a smooth manifold M that is not the restriction of a C^{∞} function on M.

1.3 Lie groups and their actions

- 1. Let G be a Lie group and let $e \in G$ be its identity.
 - (a) Show that given any neighborhood $U \ni e$ there exists a neighborhood $V \ni e$ such that $VV^{-1} \subset U$.
 - (b) Show that given any neighborhood $U \ni e$ there exists a neighborhood $W \ni e$ such that $W^2 = WW \subset U$.
- 2. Let G be a Lie group. Show that if $A \subset G$ and $U \subset G$ is open, then AU is open in G.
- 3. Show that if H is an algebraic subgroup of a Lie group G, then H is also an algebraic subgroup of G.
- 4. Establish the assertions in Example 1.3.1 (viii)(c) of the Lesson Plan. Furthermore, show that is α is rational, then $f(L_{\alpha})$ is a regular submanifold of T^2 .
- 5. Establish the assertions in Example 1.3.2 (v)(c) of the Lesson Plan.
- 6. Show that the Lie group $O(n, \mathbb{R})$ has a natural action on S^{n-1} that is transitive. Find the stabilizer (subgroup) of (1, 0, ..., 0) under this action.
- 7. Show that the Lie group $GL(n, \mathbb{R})$ has a natural action on $\mathbb{R}P^{n-1}$ that is transitive. Find the stabilizer (subgroup) of $(1, 0, \ldots, 0)$ under this action.
- 8. Consider the set

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \text{ and } a > 0 \right\}.$$

- (a) Show that G is a Lie group.
- (b) Show that the map $\theta: G \times \mathbb{R} \to \mathbb{R}$ defined by

$$\theta\left(\begin{pmatrix}a&b\\0&1\end{pmatrix},x\right) = ax + b$$

defines an action.

- (c) Does θ define a transitive action?
- 9. Consider the map $\theta : \mathbb{R}^* \times \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1} \setminus \{0\}$ defined $\theta(t, x) = tx$.
 - (a) Show that θ defines an action of \mathbb{R}^* on \mathbb{R}^{n+1} .
 - (b) Under this action, show that the orbit space $\mathbb{R}^{n+1}/\mathbb{R}^* \approx \mathbb{R}P^n$.

2 Problems for submission

- Homework 1 (Due 17/9/24): Solve problems 1.1 5, 6 and 1.2 2, 4, 6 & 10 from the practice problems above.
- Homework 2 (Due 27/9/24): Solve problems 1.3 1, 4, 7 & 9 from the practice problems above.